Tailoring the transmission lineshape spectrum of zigzag graphene nanoribbon based heterojunctions via controlling their width and edge protrusions.

نویسندگان

  • K P Dou
  • X X Fu
  • Abir De Sarkar
  • R Q Zhang
چکیده

We report a first-principles analysis of electron transport through narrow zigzag graphene nanoribbon (up to 2.2 nm) based wedge-shaped heterojunctions. We show that the width difference between the electrode and the scattering region and the edge protrusion of heterojunctions can be tuned to endow the system's transmission spectrum with distinctive features. In particular, transport through junctions with a one sided protrusion in the scattering region is always dominated by a Breit-Wigner-type resonance right at the Fermi level, regardless of the large or small width difference. On the other hand, a junction with protrusions on both sides of the scattering region shows insulating behaviour near the Fermi level for a large width difference but weak transmission channels are formed at the core of the scattering region for a small width difference. When the protrusion is absent in the junction, transmission functions display rather complex structures: double peaks situating nearly symmetrically away from the Fermi level and a strongly asymmetric profile in the vicinity of the Fermi level are observed for large and small width differences, respectively. These results may shed light on the design of real connecting components in nanocircuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Polarization-induced switching effect in graphene nanoribbon edge-defect junction.

With nonequilibrium Green's function approach combined with density functional theory, we perform an ab initio calculation to investigate transport properties of graphene nanoribbon (GNR) junctions self-consistently. Tight-binding approximation is applied to model the zigzag (ZGNR) electrodes, and its validity is confirmed in comparison to the GAUSSIAN03 periodic boundary condition calculation ...

متن کامل

Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...

متن کامل

Effect of Nanoribbon Width and Strain on the Electronic Properties of the WS2 Nanoribbon

Materials of the general form MX2 (transition metal dichalcogenides) have generated a lot of interest recently. They can form nanoribbons like graphene and such nanoribbons have versatile electronic structures and can be metallic or semiconducting by changing the edges of the ribbon. The electronic properties of such materials are not fully understood till now. In this paper we investigate one ...

متن کامل

Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

Time domain analysis of multilayer graphene nanoribbon (MLGNR) interconnects, based on ‎transmission line modeling (TLM) using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 7 47  شماره 

صفحات  -

تاریخ انتشار 2015